This internal estimation time for proportions; next testing; sample size determination.

\(\mu \text{ value not in } 95\% \)

95% interval

\(t_{24.3} = 2.064 \)

\(25.0 < 25.5 \)

\(\bar{y} \pm 2.064 SE(\bar{y}) \)

95% CI for \(m \)

Data do not support theory at 95% (confidence) level: the diff. between \(\bar{y} \) (data) & 24.3°C (theory) is statistically significant (statsig).
9: What is the broadest scope of valid generalizability outward
from your data set?

\[SE(\hat{p}) = SE(\hat{q}) = \frac{\sigma}{\sqrt{n}} \]

\[= \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} = \sqrt{\frac{0.83 \times 0.17}{12}} = 0.108 \]

\[\hat{p} \pm 2 \sqrt{\hat{p}(1-\hat{p})/n} \]

\[95\% \text{ normal C.I.} \]

\[p \pm 2 \sqrt{0.083 \times 0.17 / 12} \]

Approx. 95\% Int.